
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2003; 1:1–21 Prepared using nmeauth.cls [Version: 2000/01/19 v2.0]

A Comparison of Eigensolvers for Large-scale 3D Modal Analysis
using AMG-Preconditioned Iterative Methods

Peter Arbenz1, Ulrich L. Hetmaniuk2, Richard B. Lehoucq2, Raymond S. Tuminaro3

1 Swiss Federal Institute of Technology (ETH), Institute of Scientific Computing, CH-8092 Zurich,
Switzerland (arbenz@inf.ethz.ch)

2 Sandia National Laboratories, Computational Mathematics & Algorithms, MS 1110, P.O.Box 5800,
Albuquerque, NM 87185-1110 (ulhetma@sandia.gov,rblehou@sandia.gov).

3 Sandia National Laboratories, Computational Mathematics & Algorithms, MS 9159, P.O.Box 969,
Livermore, CA 94551 (rstumin@sandia.gov).

SUMMARY

The goal of our paper is to compare a number of algorithms for computing a large number of
eigenvectors of the generalized symmetric eigenvalue problem arising from a modal analysis of elastic
structures. The shift-invert Lanczos algorithm has emerged as the workhorse for the solution of this
generalized eigenvalue problem; however a sparse direct factorization is required for the resulting set of
linear equations. Instead, our paper considers the use of preconditioned iterative methods. We present
a brief review of available preconditioned eigensolvers followed by a numerical comparison on three
problems using a scalable algebraic multigrid (AMG) preconditioner. Copyright c© 2003 John Wiley
& Sons, Ltd.

key words: Eigenvalues, large sparse symmetric eigenvalue problems, modal analysis, algebraic

multigrid, preconditioned eigensolvers, shift-invert Lanczos

1. Introduction

The goal of our paper is to compare a number of algorithms for computing a large number of
eigenvectors of the generalized eigenvalue problem

Kx = λMx, K,M ∈ Rn×n, (1)

using preconditioned iterative methods. The matrices K and M are large, sparse, and
symmetric positive definite and they arise in a modal analysis of elastic structures.

∗Correspondence to: Rich Lehoucq, Sandia National Laboratories, Computational Mathematics & Algorithms,
MS 1110, P.O.Box 5800, Albuquerque, NM 87185-1110

Contract/grant sponsor: The work of Dr. Arbenz was in part supported by the CSRI, Sandia National
Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy; contract/grant number: DE-AC04-94AL85000

Received January 4, 2005
Copyright c© 2003 John Wiley & Sons, Ltd. Revised January 4, 2005



2 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

The current state of the art is to use a block Lanczos [20] code with a shift-invert
transformation (K − σM)−1M. The resulting set of linear equations is solved by forward
and backward substitution with the factors computed by a sparse direct factorization. This
algorithm is commercially available and is incorporated in the MSC.Nastran finite element
library.

The three major costs associated with a shift-invert block Lanczos code are

• factoring K− σM;
• solving linear systems with the above factor;
• the cost (and storage) of maintaining the orthogonality of Lanczos vectors.

The block shift-invert Lanczos approach allows for an efficient solution of (1) as long as any of
the above three costs (or a combination of them) are not prohibitive. We refer to [20] for further
details and information on a state-of-the-art block Lanczos implementation for problems in
structural dynamics. However, we note that the factorization costs increase quadratically with
the dimension n. Secondly, this Lanczos algorithm contains a scheme for quickly producing
a series of shifts σ = σ1, . . . , σp that extends over the frequency range of interest and that
requires further factorizations.

What if performing a series of sparse direct factorizations becomes prohibitively expensive
because the dimension n is large, the frequency range of interest is wide, or both cases apply?
The goal of our paper will be to investigate how preconditioned iterative methods perform when
the dimension n is large (of order 105 − 106) and when a large number, say a few hundred
eigenvalues and eigenvectors, are to be computed. With the use of an algebraic multigrid
(AMG) preconditioner, the approaches we consider are the following:

• replace the sparse direct method with an AMG-preconditioned conjugate gradient
iteration within the shift-invert Lanczos algorithm;

• replace the shift-invert Lanczos algorithm with an AMG-preconditioned eigenvalue
algorithm.

The former approach is not new and neither are algorithms for the latter alternative (see [26]).
What we propose is a comparison of several algorithms on some representative problems
in vibrational analysis. Several recent studies have demonstrated the viability of AMG
preconditioners for problems in computational mechanics [1, 38] but to the best of our
knowledge, there are no comparable studies for vibration analysis.

The paper is organized as follows. We present a general derivation of the algorithms in
Section 2 followed by details in Sections 3–4 associated with

• our implementation of LOBPCG [25];
• our block extensions of DACG [7], the Davidson [12] algorithm, and the Jacobi-Davidson

variant JDCG [28];
• and our minor modification of the implicitly restarted Lanczos method [35] in

ARPACK [27].

We also provide pseudocode for the implementations that we tested. We hope these descriptions
prove useful to other researchers (and the authors of the algorithms). Finally, Section 5
presents our numerical experiments that we performed by means of realistic eigenvalue
problems stemming from finite element discretizations of elastodynamic problems in structural



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 3

dynamics. Although our problems are of most interest for structural analysts, we believe that
our results are applicable to problems in other domains such as computational chemistry
or electromagnetism provided that they are real-symmetric or Hermitian and a multilevel
preconditioner is available.

2. Overview of Algorithms

This Section presents the basic ingredients of the algorithms compared in our paper. We first
discuss a generic algorithm that embodies the salient issues of all our algorithms. We then
highlight some of the key aspects of the algorithms we compare. The final subsection reviews
some useful notation for the pseudocodes provided.

2.1. A generic algorithm

Let the eigenvalues of problem (1) be arranged in ascending order,

λ1 ≤ λ2 ≤ · · · ≤ λn, (2)

and let Kuj = λjMuj where the eigenvectors uj are assumed to be M-orthonormalized,

〈ui,uj〉 = uT
i Muj = δij .

The algorithms we compare are designed to exploit the characterization of the eigenvalues
of (1) as successive minima of the Rayleigh quotient

ρ(x) =
xT Kx
xT Mx

, ∀ x ∈ Rn, x 6= 0. (3)

Algorithm 2.1 lists the key steps of all the algorithms. Ultimately, the success of an algorithm
crucially depends upon the subspace S constructed. Our generic algorithm is also colloquially

Algorithm 2.1: Generic Eigenvalue Algorithm (outer loop)

(1) Update a basis S ∈ Rn×m for the subspace S of dimension m < n.
(2) Perform a Rayleigh-Ritz analysis:

Solve the projected eigenvalue problem ST KSy = ST MSyθ.
(3) Form the residual: r = Kx−Mxθ, where x = Sy is called a Ritz vector

and θ = ρ(x) a Ritz value.
(4) Flag a Ritz pair (x, ρ(x)) if the corresponding residual satisfies the specified

convergence criterion.

referred to as the outer loop or iteration because Algorithm 2.1 is typically one step of an
iteration where the step (1) can invoke a further inner iteration.

2.2. The subspace S

A distinguishing characteristic of all the algorithms is the size, or number of basis vectors, m
of the subspace S when a Rayleigh-Ritz analysis is performed. The size of the basis S is either



4 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

constant or increases. Examples of the former are the gradient-based methods DACG [18, 5, 6]
and LOBPCG [25] while examples of the latter are the Davidson algorithm [12], the Jacobi-
Davidson algorithm [33], and the shift-invert Lanczos algorithm [13].

After step (4) of Algorithm 2.1, the subspace S is updated. Different choices are possible.

• Exploiting the property that a stationary point of the Rayleigh quotient is a zero of the
gradient

g(x) = grad ρ(x) =
2

xT Mx
(Kx−Mxρ(x)) =

2
xT Mx

r(x),

where r(x) is defined to be the residual and is proportional to the gradient when x is
properly normalized, a Newton step gives the correction vector

t = −
(

∂g
∂x

(x)
)−1

g(x). (4)

If we require that xT Mt = 0, then equation (4) is mathematically equivalent to[
K− ρ(x)M Mx

xT M 0

](
t
µ

)
= − 2

xT Mx

(
r(x)

0

)
, (5)

where µ is a Lagrange multiplier enforcing the M-orthogonality of t against x. The
Rayleigh quotient iteration uses the exact solution t, while the Davidson and Jacobi-
Davidson algorithms approximate this correction vector. We refer the reader to the
papers [33, 14, 39, 42] and the references therein for further details.

• The update is the search direction of a gradient method applied to the minimization of
the Rayleigh-quotient (3). Hestenes and Karush [22] proposed an algorithm à la steepest
descent, where the update direction p is proportional to the gradient g(x). Bradbury and
Fletcher [9] introduced a conjugate gradient-type algorithm where consecutive update
directions p are K-orthogonal. Knyazev [25] employs a three-term recurrence. We refer
the reader to the papers [15, 29, 17, 4, 32, 24] for variants including the incorporation of
preconditioning, convergence analysis, and deflation schemes.

• The update z is the solution of the linear set of equations

(K− σM)z = Mqk, (6)

where the subspace {q0, · · · ,qk, z} defines a Krylov subspace for (K − σM)−1M
generated by the starting vector q0. The reader is referred to [13, 34, 20] for further
information.

Preconditioning can be incorporated in all the updates. The gradient-based methods are
accelerated by applying the preconditioner N to the gradient g (or the residual r) while the
Newton-based schemes and the shift-invert Lanczos method employ preconditioned iterative
methods for the solution of the associated sets of linear equations.

Finally, except for the ARPACK implementation of the Lanczos algorithm, our algorithms
incorporate an explicit deflation (or locking) step when a Ritz vector satisfies the convergence
criterion. In our implementations, the columns of S satisfy

QT MS = 0,

where Q contains the converged Ritz vectors.



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 5

2.3. Some notations

In the remainder of the paper, we provide pseudocode for the algorithms we employed in our
comparison. The notation α := β denotes that α is overwritten with the results of β. The
following functions will be used repeatedly within the pseudocodes provided.

1. (Y,Θ) := RR(S, b) performs a Rayleigh-Ritz analysis where eigenvectors Y and
eigenvalues Θ are computed for the pencil (ST KS,ST MS). The first b pairs with smallest
Ritz values are returned in Y and Θ in a nondecreasing order.

2. Y := ORTHO(X,Q) denotes that Y = (I−QQT M)X where QT MQ = I.
3. Y := QR(X) denotes that the output matrix Y satisfies YT MY = I and Range(Y) =

Range(X).
4. size(X, 1) and size(X, 2) denote the number of rows and columns of X, respectively.
5. The matrix Q always denotes the Ritz vectors that satisfy the convergence criterion;

K,M, and N denote the stiffness, mass, and preconditioning matrices. Application of N
to a vector b implies computing the vector N−1b.

The generic function RR(·, ·) invokes the appropriate LAPACK [2] subroutine. The generic
functions ORTHO(·) and QR(·) implement a classical block Gram-Schmidt algorithm [3, p. 186]
with iterative refinement [23, 8].

3. Schemes with constant-size subspaces

This Section describes two schemes for minimizing the Rayleigh quotient on a subspace with
a fixed size. The first scheme is based on the Bradbury and Fletcher [9] conjugate gradient
algorithm. The second scheme uses a three-term recurrence.

3.1. The block deflation-accelerated conjugate gradient (BDACG) Algorithm

Algorithm 3.2 lists the iteration associated with BDACG. We have adopted this name from a
series of papers [18, 5, 6, 7] that present an unblocked scheme. The iteration is continued until
the desired number of eigenpairs are approximated.

The space for the minimization of the Rayleigh quotient is the span of [Xk,Pk]. The block
of vectors Pk is our block extension for the search direction introduced by the gradient scheme
of Bradbury-Fletcher [9]. BDACG-(5), i.e. step (5) in the BDACG Algorithm 3.2, computes
the search directions with the preconditioned residuals instead of the preconditioned gradients
because the columns of Xk are M-orthonormal. We remark that each column vector of Pk

is only K-orthogonal to the corresponding column vector of Pk−1. Enforcing the stronger
condition PT

k KPk−1 = 0 lead to a more expensive iteration with no reduction in the number
of (outer) iterations.

BDACG-(6) M-orthogonalizes the current search directions Pk against the column span
of Q that contains Ritz vectors that have been deflated. Our experiments revealed that this
orthogonalization prevented copies of Ritz values from emerging during the course of the
iteration. In our experiments, we determined that the eigenvectors computed in BDACG-
(7) needed to be scaled so that the diagonal elements of Yk are nonnegative. This is a
generalization of quadratic line search that retains the positive root in the unblocked algorithm.



6 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

Algorithm 3.2: (BDACG) Block deflation-accelerated conjugate gradient
Algorithm

(1) Select a random X̃0 ∈ Rn×b where 1 ≤ b < n is the blocksize; X0 := X̃0Ỹ0

where (Ỹ0,Θ0) := RR(X̃0, b) and let R0 := KX0 − MX0Θ0.
(2) Set k := 0 and Q := [].
(3) Until size(Q, 2) ≥ nev do
(4) Solve the preconditioned linear system NHk = Rk.
(5) If k = 0 then

Pk := −Hk and Bk := diag(HT
k Rk).

else
Pk := −Hk + Pk−1Bk and Bk := diag(HT

k Rk)B−1
k−1.

end if.
(6) Pk := ORTHO(Pk,Q).
(7) Let Sk := [Xk,Pk] and compute (Yk,Θk+1) := RR(Sk, b).
(8) Xk+1 := SkYk.
(9) Rk+1 := KXk+1 −MXk+1Θk+1.
(10) k := k + 1.
(11) If some columns of Rk satisfy the convergence criterion then

Augment Q with the corresponding Ritz vectors from Xk;
set k := 0 and define new X0 and R0.

end if.
(12) end Until.

BDACG-(11) deflates Ritz vectors from Xk when they satisfy the convergence criterion. The
new columns of X0 are defined by the vectors not-deflated and the vectors associated with the
next largest Ritz values. In practice, the generic function RR(·, ·) calls the LAPACK routine
DSYGV that computes the 2b eigenpairs of the projected eigenproblem.

The matrices K, M, and N are accessed only once per iteration (except where M is used for
deflation). Therefore, we store the block vectors Xk, KXk, MXk, Pk, KPk, MPk, Rk, and
Hk. When the first nev eigenpairs are requested, the overall storage requirements for BDACG
are:

• a vector of length nev elements (for the converged Ritz values),
• nev vectors of length n (for the converged Ritz vectors),
• 8 · b vectors of length n,
• O(b2) elements (for the Rayleigh-Ritz analysis).

In our experiments, the matrix Bk remained non-singular throughout the computation and
the Rayleigh-Ritz analysis never failed. However, for the sake of robustness, we have equipped
BDACG with a restart when one of these failures occurs.



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 7

Algorithm 3.3: (LOBPCG) Locally-optimal block preconditioned conjugate
gradient method

(1) Select a random X̃0 ∈ Rn×b where 1 ≤ b < n is the blocksize; X0 := X̃0Ỹ0

where (Ỹ0,Θ0) := RR(X̃0, b) and let R0 := KX0 − MX0Θ0.
(2) Set k := 0, Q := [], and P0 := [].
(3) Until size(Q, 2) ≥ nev do
(4) Solve the preconditioned linear system NHk = Rk.
(5) Hk := ORTHO(Hk,Q).
(6) Let Sk := [Xk,Hk,Pk] and compute (Yk,Θk+1) := RR(Sk, b).
(7) Xk+1 := [Xk,Hk,Pk]Yk.
(8) Pk+1 := [0,Hk,Pk]Yk.
(9) Rk+1 := KXk+1 −MXk+1Θk+1.
(10) k := k + 1.
(11) If some columns of Rk satisfy the convergence criterion then

Augment Q with the corresponding Ritz vectors from Xk;
set k := 0 and define new X0 and R0.

end if.
(12) end Until.

3.2. The locally-optimal block preconditioned conjugate gradient (LOBPCG) Algorithm

In contrast to BDACG, Knyazev [25] suggests that the space for the minimization be
augmented by the span of Hk. The resulting algorithm is deemed locally-optimal because
the Rayleigh quotient ρ is minimized with respect to all available vectors. Mathematically, the
span of [Xk,Hk,Pk] is equal to the span of [Xk,Hk,Xk−1]. The columns of the former matrix
are better conditioned than the columns of the latter matrix.

Algorithm 3.3 lists the iteration associated with LOBPCG. Our implementation of LOBPCG
differs from the one presented in [25]. For instance, we employ explicit deflation and allow the
block size b to be independent of the number of Ritz pairs desired. The iteration is continued
until the desired number of eigenpairs are approximated.

LOBPCG-(5) M-orthogonalizes the current preconditioned residuals Hk against column
span of Q that contains Ritz vectors that have been deflated. Our experiments revealed that
this orthogonalization prevented copies of Ritz values from emerging during the course of the
iteration.

LOBPCG-(11), as in BDACG, deflates Ritz vectors from Xk when they satisfy the
convergence criterion. The new columns of X0 are defined by the vectors not-deflated and
the vectors associated with the next largest Ritz values. In practice, the generic function
RR(·, ·) calls the LAPACK routine DSYGV.

The matrices K, M, and N are accessed only once per iteration (except where M is used for
deflation). Therefore, we store the block vectors Xk, KXk, MXk, Hk, KHk, MHk, Pk, KPk,
MPk, and Rk. When the first nev eigenpairs are requested, the overall storage requirements
for the algorithm LOBPCG are:



8 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

• a vector of length nev elements (for the converged Ritz values),
• nev vectors of length n (for the converged Ritz vectors),
• 10 · b vectors of length n,
• O(b2) elements (for the Rayleigh-Ritz analysis).

In our experiments, the Rayleigh-Ritz analysis never failed. But, for the sake of robustness,
we have equipped our code with a restart when the routine DSYGV fails.

4. Schemes with subspaces that increase in size

In this Section, we present three schemes for minimizing the Rayleigh quotient on a subspace
with a varying size. The first two are Newton-based schemes and the third is a shift-invert
Lanczos method.

4.1. The block Davidson Algorithm

Algorithm 4.4: Block Davidson Algorithm

(1) Select a random X̃0 ∈ Rn×b where 1 ≤ b < n is the blocksize; X0 := X̃0Ỹ0

where (Ỹ0,Θ0) := RR(X̃0, b) and let R0 := KX0 −MX0Θ0.
(2) Set k := 0, Q := [], and S0 := [X0].
(3) Until size(Q, 2) ≥ nev do
(4) Solve the preconditioned linear system NHk = Rk.
(5) Hk := ORTHO(Hk, [Q,Sk]).
(6) Hk := QR(Hk).
(7) Let Sk+1 := [Sk,Hk] and compute (Yk+1,Θk+1) := RR(Sk+1, b).
(8) Xk+1 := Sk+1Yk+1.
(9) Rk+1 := KXk+1 −MXk+1Θk+1.
(10) k := k + 1.
(11) If any columns of Rk satisfy the convergence criterion then

Augment Q with the corresponding Ritz vectors from Xk and
restart to obtain an updated Sk.

end if.
(12) If the dimensions of Sk reach the limit of storage allocated then

Restart to obtain an updated Sk.
end if.

(13) end Until.

Algorithm 4.4 lists the iteration associated with our block extension of the Davidson
algorithm (see [31, 36] for alternate block variants and references). The iteration is continued
until the desired number of eigenpairs are approximated.

At the k-th iteration, the subspace Sk for the minimization of the Rayleigh quotient is
spanned by the M-orthonormal basis Sk. To enrich the subspace at each iteration, we use



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 9

the preconditioned residuals N−1Rk as an approximation to the correction vector T for the
Newton step of equation (4). This approximation differs from the Davidson algorithm [12] in
that we employ a fixed preconditioner N at every step.

The step Davidson-(5) M-orthogonalizes the columns of Hk against the deflated Ritz vectors
stored in Q and the basis Sk. Then Davidson-(6) M-orthonormalizes the resulting vectors.

The generic function RR(·, ·) in Davidson-(7) calls the LAPACK routine DSYEV that
computes all the eigenpairs of the projected eigenproblem.

Davidson-(11) deflates Ritz vectors from Xk when they satisfy the convergence criterion.
The columns of the residual matrix Rk associated with deflated Ritz vectors are replaced with
the Ritz vectors corresponding to the next largest Ritz values.

Davidson-(12) limits the dimension of the subspace basis Sk. When nev eigenpairs are
requested, the number of vectors allocated for the storage of [Q,Sk] is 2 · nev + b and this
combined storage represents the working subspace. As the iteration progresses and Ritz pairs
converge, the number of vectors in the active subspace Sk is bounded by

2 · nev − b size(Q, 2)
b

c · b, (7)

where b·c is the floor function.
Both Davidson-(11) and Davidson-(12) effect a restart. Suppose that the number of columns

of Sk is p · b. Then we restart by multiplying Sk with the bp/2c · b columns of Yk associated
with the smallest Ritz values not deflated. The choice of bp/2c · b columns for the restart of Sk

is a balance between a number large enough so that the loss of information is minimized and
small enough so that a useful subspace Sk is constructed before the limit (7) on the number
of columns is attained. Restarting with Ritz vectors associated with the smallest Ritz values
worked better in practice than using random vectors. The paper [37] discusses related restart
strategies.

The preconditioner N is applied only once per iteration, while the matrices K and M are
accessed twice per iteration (except where M is used for deflation and orthonormalization).
When the first nev eigenpairs are requested and with the upper limit (7), the overall storage
requirements for our implementation of Davidson are:

• a vector of length nev words (for the converged Ritz values),
• 2·nev vectors of length n (the converged Ritz vectors are stored in the initial nev vectors),
• 4 · b vectors of length n,
• O(nev2) elements (for the Rayleigh-Ritz analysis),
• O(b2) elements.

Our implementation proved stable during all our experiments.

4.2. The block Jacobi-Davidson conjugate gradient Algorithm (BJDCG)

Our second scheme for minimizing the Rayleigh quotient by expanding the subspace is a
block extension of a Jacobi–Davidson algorithm [33]. We implement a block version of the
Jacobi–Davidson variant due to Notay [28] tailored for symmetric matrices. We do not list an
algorithm for BJDCG because the differences with Algorithm 4.4 are slight. The algorithms
differ mainly in the enrichment of the subspace. Step (4) of Algorithm 4.4 is replaced by

Hk = CORRECTION(Rk,N, Q̂, τ, ε), where Q̂ := [Q,Xk],



10 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

that solves the correction equation

(I−MQ̂Q̂T )(K− τM)(I− Q̂Q̂T M)T = −Rk with Q̂T MT = 0 (8)

with a block preconditioned conjugate gradient (BPCG) algorithm. The correction equation
(8) is equivalent to the block extension of equation (5) with righthand side

−
(
Rk

0

)
.

Algorithm 4.5 lists the BPCG iteration we used to solve the correction equation (8). Step

Algorithm 4.5: Routine H = CORRECTION(R,N, Q̂ = [Q,X], τ, ε)

(1) Set j := 0, T0 := 0, and R̃0 := −R.
(2) While j < 1, 000 do

(3) Wj :=
[
I−N−1MQ̂

(
Q̂T MN−1MQ̂

)−1

Q̂T M
]
N−1R̃j .

(4) If j = 0 then
P0 := W0.

else

Pj :=
[
I−Pj−1

(
PT

j−1(K− τM)Pj−1

)−1
PT

j−1(K− τM)
]
Wj .

end if.

(5) Tj+1 := Tj + Pj

(
PT

j (K− τM)Pj

)−1
PT

j R̃j .

(6) R̃j+1 := R̃j − (K− τM)Pj

(
PT

j (K− τM)Pj

)−1
PT

j R̃j .
(7) j := j + 1.

(8) If all the columns of R̃j satisfy the convergence criterion then
Exit the loop.

end if
(9) If j > 1 then

Check the eigenresiduals associated with X + Tj for an early exit.
end if.

(10) end While.
(11) H := Tj .

(3) applies the preconditioner N to the correction equation (8) (see Geus’ thesis [19] for
details). Step (4) computes the block of search directions, and steps (5)–(6) compute the j-th
approximation to the correction equation and corresponding residual, respectively. Step (8)
terminates the BPCG iteration when the Euclidean norms of the columns of R̃j have been
reduced by a factor of ε relative to the columns of R̃0. The tolerance ε used in Algorithm 4.5
is set equal to 2−` where ` is a counter on the number of (outer) BJDCG iterations needed to
compute a Ritz value (see [39, p.130] for a discussion).

The coefficient τ is set to 0 when the norm of residuals in Rk are larger than a given
tolerance. Otherwise, τ is set to the smallest Ritz value in Θk. The reader is referred to [16]
for further details.



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 11

In contrast to step (8) that checks for termination of the BPCG algorithm, step (9) checks
the Ritz pair residuals. Because Tj is the approximation to the correction equation, we define

V = (X + Tj)Y, where (Y,Θ) = RR(X + Tj , b),

and check the columns norms of KV − MVΘ. If any column norm stagnates, increases in
norm, or satisfies the convergence criterion, then we exit the BPCG iteration with the current
approximation Tj (see Notay’s paper [28] for further details and discussion).

A generalization of the proof given by Notay [28] to the generalized symmetric positive
definite eigenvalue problem shows that PT

j (K− τM)Pj is symmetric positive definite (on the
space orthogonal to the range of Q̂). For robustness, if this matrix becomes indefinite, we exit
the BPCG loop and perform a restart of the search space Sk in BJDCG. In our numerical
experiments, the maximum number of BPCG iterations was never reached.

When the first nev eigenpairs are requested, the number of column vectors allocated for the
storage of [Q,Sk] is also 2 · nev + b. Therefore, the overall storage requirements for BJDCG
are:

• a vector of nev elements (for the converged Ritz values),
• 2·nev vectors of length n (the converged Ritz vectors are stored in the initial nev vectors),
• nev vectors of length n (for storing N−1MQ),
• 5 · b vectors of length n,
• 4 · b vectors of length n (for the block PCG),
• O(nev2) elements (for the Rayleigh-Ritz analysis),
• O(b2) elements.

The storage requirements of BJDCG are the largest of all the algorithms we compared.

4.3. The shift-invert Lanczos Algorithm

Algorithm 4.6 lists the iteration associated with the shift-invert Lanczos algorithm, when the
nev eigenpairs closest to σ are requested. Our implementation of Algorithm 4.6 is based on the
implicitly restarted Lanczos method in ARPACK. For detailed comments, we refer the reader
to the users’ guide [27]. In our experiments, we are interested in the smallest eigenvalues of
the generalized eigenvalue (1). Therefore, we set the shift σ to 0.

At the k-th iteration, the subspace Sk for the minimization of the Rayleigh quotient is
spanned by the M-orthonormal basis Sk. Lanczos-(4) defines the new direction for enriching
the subspace Sk at each iteration. We use an AMG-preconditioned conjugate gradient iteration
as an inner iteration to solve the linear system.

Lanczos-(5) and Lanczos-(6) M-orthogonalize the new direction z against the basis Sk and
M-orthonormalize the resulting vector, respectively.

Lanczos-(9) limits the dimension of the subspace basis Sk. When nev eigenpairs are
requested, the number of column vectors allocated for the storage of Sk is 2· nev.

In step Lanczos-(9a), the projected eigenproblem is tridiagonal and automatically generated
by the Lanczos iteration and so an explicit projection with Sk in the Rayleigh-Ritz analysis
is not needed. The generic function RR(·, ·) calls the ARPACK routine DSEIGT (based on a
modification of the LAPACK routine DSTQR) to compute all the eigenpairs of the tridiagonal
matrix. We remark that in contrast to other eigensolvers, shift-invert Lanczos requires the
largest nev eigenvalues of the projection matrix.



12 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

Algorithm 4.6: Shift-invert Lanczos Algorithm

(1) Select a random q̃0 ∈ Rn; q0 := QR(q̃0).
(2) Set k := 0, nconv := 0, and S0 := [q0].
(3) Until nconv ≥ nev do
(4) Solve (K− σM)z = Mqk.
(5) z := ORTHO(z,Sk).
(6) qk+1 := QR(z).
(7) Sk+1 := [Sk,qk+1].
(8) k := k + 1.
(9) If the dimensions of Sk reach the limit of storage allocated then

(9a) Compute (Yk,Θk) := RR(Sk, nev).
(9b) Rk := KSkYk −MSkYk(σI + Θ−1

k ).
(9c) Let nconv denote the number of Ritz pairs that satisfy the
convergence criterion; Exit the outer loop if nconv ≥ nev.
(9d) Restart to obtain an updated Sk.
end if.

(10) end Until.

Steps Lanczos-(9b) and Lanczos-(9c) monitor the convergence of the Ritz pairs by explicitly
computing the first nev residuals Rk and testing each column against our convergence criterion.
This is in contrast to the ARPACK convergence check [27] that monitors the convergence of
the eigenpairs of the shift-invert system via Ritz estimates. The explicit computation of the
residuals required us to edit the ARPACK source code to include a reverse communication
step so as to allow the code calling ARPACK to compute the residuals.

Finally, because Sk holds a maximum of 2· nev vectors, Lanczos-(9d) implements implicit
restarting. We refer the reader to [27] for specific details on implicit restarting but in analogy
with the block Davidson algorithm, Sk is compressed into a matrix with less columns containing
the best approximation to the smallest eigenvalues. The number of columns after restarting is

nev + max(nconv, 0.5 · nev)

where nconv denotes the number of Ritz pairs that satisfy the convergence criterion. The
reader is referred to [27] for further details. Increasing the number of columns by the number
of converged Ritz pairs effects an implicit deflation or equivalently soft-locking [25] mechanism.

In our experiments, when the smallest nev eigenpairs are requested, the overall storage
requirements for shift-invert Lanczos are:

• a vector of length nev elements (for the converged Ritz values),
• 2 · nev vectors of length n (for storing Sk and the converged Ritz vectors),
• 5 vectors of length n,
• O(nev2) elements,
• 3 vectors of length n (for conjugate gradient algorithm),
• 6 min(nev, 5) vectors of length n (for computing the residuals).



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 13

We remark, that unlike the previous algorithms, ARPACK does not check for convergence at
each outer iteration. Instead, convergence of Ritz pairs is determined at restart. Moreover,
there is no explicit deflation step only a postprocessing step to overwrite the Lanczos vectors
with Ritz vectors upon convergence of nev (or more) Ritz pairs.

5. Numerical experiments

In this Section, we discuss the numerical experiments used for the comparisons. The codes
are implemented in C++, using the Trilinos [21] project. This project provides, through a
collection of classes, the algebraic operations, the smoothed aggregation AMG preconditioner,
and the preconditioned conjugate gradient algorithm. For the shift-invert Lanczos algorithm,
our C++ code invokes the Fortran 77 package ARPACK [27].

Inside Trilinos, the linear algebra class, namely Epetra, manipulates the vectors, the blocks
of vectors (or multivectors), and the sparse matrices. All these objects are distributed across
the processors. Whenever possible, Epetra implements the algebraic operations block-wise. For
instance, the matrices K and M can be applied efficiently to a block of vectors.

Because ARPACK is a publicly available high-quality Lanczos implementation that includes
a distributed memory implementation, we present the normalized timings

time for an eigensolver
time for ARPACK

(9)

where eigensolver is in turn BDACG, LOBPCG, block Davidson, and BJDCG. The initial
vectors used by all the algorithms are generated using a random number generator. In addition
to reporting the size of residuals, all the algorithms checked the orthonormality of the Ritz
vectors computed via the check

max
i,j=1,...,nev

|eT
i (XT MX− I)ej |. (10)

We first describe some details associated with the AMG preconditioner in subsection 5.1
followed by the results of our experiments on three problems.

5.1. AMG Preconditioner

The package ML provides the smoothed aggregation AMG preconditioner [41]. Several recent
studies have demonstrated the viability of AMG preconditioners for problems in computational
mechanics [1, 38]. In addition to the public domain package ML, the commercial finite element
analysis program ANSYS now provides an AMG-based solver [30].

The smoothed aggregation AMG algorithm requires no geometric information and therefore
is attractive for complex domains with unstructured meshes. The basic idea of all AMG
algorithms is to capture errors by utilizing multiple resolutions. High energy (or oscillatory)
components are effectively reduced through a simple smoothing procedure, while low energy (or
smooth) components are tackled using an auxiliary lower resolution version of the problem.
The idea is applied recursively on the next coarser level. A sample multilevel iteration is
illustrated in Algorithm 5.7 to solve A1v1 = b1.



14 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

Algorithm 5.7: Multigrid V cycle with Nlevel grids to solve A1v1 = b1.

(1) Procedure Multilevel(Ak,bk,vk, k)
(2) Smooth vk.
(3) If (k 6= Nlevel)
(4) rk = bk −Akvk.
(5) Project Ak and rk to generate Ak+1 and r̃k.
(6) Multilevel(Ak+1, r̃k,vk+1, k + 1).
(7) Interpolate vk+1 to generate ṽk+1.
(8) Smooth vk + ṽk+1.
(9) end if

The Ak’s (k > 1) are coarse grid discretization matrices computed by a Galerkin projection†.
Smoothing damps high energy errors and corresponds to iterations of a Chebyshev semi-
iterative method tuned to damp errors over the interval [ρ(Ak)/30, ρ(Ak)] where ρ(Ak) is the
spectral radius estimated with 10 Lanczos iterations. This is divided by the approximate
multigrid coarsening rate to obtain the lower endpoint of the interval. Interpolation (or
prolongation) operators transfer solutions from coarse grids to fine grids.

In smoothed aggregation, nodes are aggregated together to effectively produce a coarse mesh
and a tentative prolongator is generated to transfer solutions between these meshes. For Poisson
problems, this prolongator is essentially a matrix of zeros and ones corresponding to piecewise-
constant interpolation. The tentative prolongator for elasticity exactly interpolates low energy
modes. In each matrix column (or coarse grid basis function), only rows corresponding to nodes
within one aggregate are nonzero. The tentative prolongator is then smoothed to improve the
grid transfer operator. The general idea is to reduce the energy of the coarse grid basis functions
while maintaining accurate rigid body mode interpolation. This smoothing step is critical to
obtaining mesh-independent multigrid convergence [10, 40].

5.2. The Laplace eigenvalue problem

We consider the continuous problem

−∆u(x) = λu(x), in Ω = (0, 1)× (0,
√

2)× (0,
√

3),
u(x) = 0, on ∂Ω.

(11)

We use an orthogonal mesh composed of 8-noded brick elements. On each coordinate axis, we
define 100 interior nodes. The resulting finite element discretization generates matrices K and
M of order n = 1, 000, 000.

Analytical expressions of the eigenmodes and frequencies for (K,M) are available. When
n = 1, 000, 000, we have

λ1 ≈ 18.1, λn ≈ 21, 938, λn − λ1 ≈ 2 · 105

†The Ak’s are determined in a preprocessing step and not computed within the iteration as shown here.



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 15

and the relative gap
λi − λi−1

λn − λ1
. (12)

for the 200 smallest eigenvalues varies between 10−8 and 10−4 with eigenvalues 20–23 nearly
identical. We remark that all the eigenvalues are simple. This model problem is extremely
useful because it allows us to verify our implementations of the various algorithms. We verify
the results against expected rates of convergence given by the finite element method and by
using the analytic expressions to determine the reliability of our implementations—were any
eigenvalues missed?

The AMG preconditioner generated four levels with 41616, 2016, 180, and 32 vertices. The
storage needed to represent the operators on these levels represented 7% of the storage for K.
As an indication of the quality of the preconditioner, the preconditioned conjugate gradient
reduces the residual norm by a factor 105 in 10 iterations.

The computations were performed on a cluster of DEC Alpha processors, where each
processor has access to 512 MB of memory. We used 16 processors to determine the
10, 20, 50, 100, and 200 smallest eigenpairs. A pair (x, θ) is considered converged when the
criterion

1
√

µ1

‖Kx−Mxθ‖2

‖x‖M
≤ θ · 10−4 (13)

is satisfied. The scalar µ1 is the smallest eigenvalue of the mass matrix M; when n = 1, 000, 000,
µ1 ≈ 8 · 10−8. We remark that the tolerance of 10−4 represents the discretization error.

For the shift-invert Lanczos algorithm, we solve the linear system to an accuracy of 10−5

relative to the norm of the initial residual.
For the Jacobi-Davidson algorithm, the coefficient τ is set to the smallest Ritz value as soon

as the criterion
1

√
µ1

‖Kx−Mxθ‖2

‖x‖M
≤ θ ·

√
10−4 (14)

is satisfied.

5.2.1. Reliability After the computation, we performed the following tests to verify the
quality of the computation.

• All the algorithms returned Ritz vectors M-orthonormal to machine precision.
• The largest angle between the span of the computed eigenvectors and the span of the

exact discrete eigenvectors was smaller than 10−5 radians.
• No algorithm missed an eigenvalue, when the block size was 1. For larger block sizes,

the computations for 20 eigenvalues often missed the 20-th eigenvalue. At the continuous
level, this eigenvalue has a multiplicity of 4, while, at the discrete level, the spectrum
has a cluster of 4 eigenvalues in the interval [97.1, 97.22]. BDACG had the most misses,
while BJDCG had the least. The LOBPCG and Davidson algorithms behaved in a similar
fashion.

We remark that for nearly all eigenvalue problems the answers are not known beforehand
so reliability cannot be ascertained. A defect of using preconditioned iterative methods is the
inability to determine whether all eigenvalues in the frequency range of interest were computed.
This lack of reliability is a factor for high-consequence modal analysis.



16 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

5.2.2. Comparison of CPU times In Figures 1-4, we plot the speedup (9) as block sizes and
number of computed eigenvalues were varied. For each algorithm, we measure the CPU time
of the outer loop and do not include the preprocessing needed for the matrices K and M and
for the AMG preconditioner.

For BDACG, we used a block size no larger than the number of requested eigenvalues.
The small relative gaps prevented the computations with a block size of 1 to converge after
5000 iterations when 50, 100, and 200 eigenvalues were requested. The computations for 200
eigenvalues with a block size of 2 were not competitive and therefore are not reported.

For LOBPCG, we used a block size strictly smaller than the number of requested eigenvalues.
The computations for 100 eigenvalues with a block size of 1 and for 200 eigenvalues with a
block size of 2 were not competitive and therefore are not reported.

For the Jacobi-Davidson algorithm, the experiment for 200 eigenvalues with block size of 20
required too much memory. The average number of iterations to solve the correction equation
ranged from 2 to 4.

0.10

1.00

10.00

10 20 50 100 200

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 1. Ratio of BDACG to Lanczos CPU times for the Laplace eigenvalue problem

We draw the following conclusions from the four plots.

• The AMG preconditioned shift-invert Lanczos algorithm is typically faster once 50 or
more eigenvalues are requested. The exception is the block Davidson algorithm.

• The ratio (9) approaches one for increasing block size and increasing eigenvalues
requested.

5.2.3. Comparison for best CPU times In Figure 5, we report the best times obtained with
each algorithm for a specified number of requested eigenvalues. We recall that the AMG
preconditioner is applied one vector at a time even when applied to a group of vectors. In



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 17

0.10

1.00

10.00

10 20 50 100 200

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 2. Ratio of LOBPCG to Lanczos CPU times for the Laplace eigenvalue problem

0.10

1.00

10.00

10 20 50 100 200

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 3. Ratio of Davidson to Lanczos CPU times for the Laplace eigenvalue problem



18 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

0.10

1.00

10.00

10 20 50 100 200

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 4. Ratio of BJDCG to Lanczos CPU times for the Laplace eigenvalue problem

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120 140 160 180 200

Number of eigenvalues requested

C
P

U
 T

im
e
 (

s)

Lanczos BDACG LOBPCG Davidson JDCG

Figure 5. Best CPU times observed for the Laplace eigenvalue problem

this case, the Davidson algorithm is the most efficient algorithm for our computations on this
model problem.

In Figure 6, we report the times extrapolated for each algorithm when we assume a speedup
(in time) of 1.5 for the application of the preconditioner. We observed a speedup of 1.5



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 19

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120 140 160 180 200

Number of eigenvalues requested

C
P

U
 T

im
e
 (

s)

Lanczos BDACG LOBPCG Davidson JDCG

Figure 6. Extrapolated CPU times for the Laplacian eigenvalue problem

Table I. Evolution of block sizes for the Laplace eigenvalue problem

nev BDACG LOBPCG Davidson BJDCG Lanczos
10 5 5 2 2 1
20 10 10 2 5 1
50 20 20 5 5 1
100 20 20 10 10 1
200 20 20 20 10 1

when computing sparse matrix-vector products with K and M and so we believe that a
factor 1.5 speedup is feasible when applying the preconditioner to a block of vectors because
of the underlying matrix-vector products involved. For this case, the Davidson algorithm
remains the most efficient algorithm for this model problem. However, all the block algorithms
now outperform the shift-invert Lanczos scheme, which does not employ a block Krylov
subspace. This plot illustrates the importance of block algorithms and performing the algebraic
operations in a block wise fashion.

In Table I, we report the block sizes that gave the best performance for computing nev
eigenvalues. We note that the gradient-based algorithms were more sensitive to larger block
sizes than the Newton-based algorithms. The sizes of the subspace S for BDACG, LOBPCG,
block Davidson, and BJDCG are 2 · b, 3 · b, 2 · nev + b, and 2 · nev + b, respectively. Therefore
a larger block size has a greater impact upon the gradient-based schemes.

In Table II, we report the fraction of time spent in the orthogonalization routine.
Asymptotically, this operation requires O(n · nev2 · b) floating point operations. Therefore,



20 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

Table II. Relative cost for orthogonalization for the Laplace eigenvalue problem

nev BDACG LOBPCG Davidson BJDCG Lanczos
10 7 % 6 % 18 % 6 % 7 %
20 7 % 7 % 22 % 7 % 9 %
50 9 % 8 % 21 % 7 % 14 %
100 11 % 11 % 24 % 8 % 20 %
200 15 % 14 % 28 % 7 % 32 %

Table III. Number of preconditioned operations for the Laplace eigenvalue problem

nev BDACG LOBPCG Davidson BJDCG Lanczos
10 273 (68 %) 230 (64 %) 156 (45 %) 90 (60 %) 49 (89 %)
20 596 (66 %) 530 (61 %) 320 (42 %) 232 (52 %) 85 (88 %)
50 1620 (61 %) 1380 (58 %) 810 (42 %) 510 (54 %) 176 (83 %)
100 3420 (60 %) 2820 (56 %) 1663 (40 %) 1163 (50 %) 301 (77 %)
200 8386 (58 %) 6620 (54 %) 3393 (37 %) 2486 (53 %) 601 (65 %)

the importance of orthogonalization increases with the number of eigenvalues requested. The
Davidson and the shift-invert Lanczos algorithms both build an M-orthonormal search space,
which explains the higher relative cost. The Jacobi-Davidson seems to have a smaller growth
for this cost. However, the growth is offset by the cost of solving the correction equation.

In Table III, we report data on the number of applications (first number) and fraction of
the total time (second number) needed by the eigensolver to apply the AMG preconditioner.
Column BJDCG lists the number of applications of the preconditioner to R̃j in step (3) of
Algorithm 4.5. Column BJDCG does not list the applications of the AMG preconditioner
when computing N−1MQ̂ in step (3) of Algorithm 4.5, which represents roughly 20% of the
total time. We construct N−1MQ̂ incrementally with the construction of Q̂. The table shows
that the Lanczos algorithm is the most parsimonious applier of the AMG preconditioner. The
number of applications of the AMG preconditioner is linear in the number of eigenvalues
requested per eigensolver except for BDACG and LOBPCG when 200 are requested.

5.3. Elastic Tube

Our second eigenvalue problem arises from a homogeneous linear elastic problem. The pencil
(K,M) is of order n = 1, 080, 000. These matrices result from the finite element discretization
of a tube. The mesh has 360, 000 vertices, which is a refinement of the mesh depicted in
Figure 7. Homogeneous Dirichlet boundary conditions are enforced on the outer left radial
face.

The matrices K and M contain 81, 466, 472 and 27, 155, 520 non-zero entries. For
both matrices, we estimated their extremal eigenvalues with ARPACK, which resulted in
approximate condition numbers of 109 and 300 for the stiffness K and mass M matrices,



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 21

Figure 7. Coarse mesh for the elastic tube model

respectively.
The AMG preconditioner had three coarser levels with 88194, 3048, and 168 vertices. The

storage needed for the AMG operators on the three levels represented 24% of the storage
needed for K.

The computations were performed on the same cluster of DEC Alpha processors as for the
Laplace eigenvalue problem. On 24 processors, we determined the 10, 20, 50, and 100 smallest
eigenpairs. A pair (x, θ) is considered converged when the criterion

‖Kx−Mxθ‖2

‖x‖M
≤ θ · 10−4 (15)

is satisfied.
For the shift-invert Lanczos algorithm, the preconditioned conjugate gradient algorithm

reduces the residual norm by a factor of 2 · 104 during each inner iteration. The number of
conjugate gradient iterations to achieve this reduction ranged from 55 to 75.

For the Jacobi-Davidson algorithm, the coefficient τ is set to the smallest Ritz value as soon
as the criterion

‖Kx−Mxθ‖2

‖x‖M
≤ θ ·

√
10−4 (16)

is satisfied. The number of iterations to solve the correction equation ranged from 1 to 3.
All the algorithms returned Ritz vectors M-orthonormal to at least 10−12.

5.3.1. Comparison of CPU times As for the Laplace eigenvalue problem, we plot the speedup
relative to the time for ARPACK (9) for different block sizes and different number of computed
eigenvalues (see Figures 8-11).

We draw the following conclusions from the four plots.



22 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

0.10

1.00

10.00

10 20 50 100

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 8. Ratio of BDACG to Lanczos CPU times for the elastic tube

0.10

1.00

10.00

10 20 50 100

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 9. Ratio of LOBPCG to Lanczos CPU times for the elastic tube



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 23

0.10

1.00

10.00

10 20 50 100

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 10. Ratio of Davidson to Lanczos CPU times for the elastic tube

0.10

1.00

10.00

10 20 50 100

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 11. Ratio of BJDCG to Lanczos CPU times for the elastic tube



24 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

Table IV. Evolution of block sizes for the elastic tube

nev BDACG LOBPCG Davidson BJDCG Lanczos
10 10 5 1 1 1
20 10 5 1 1 1
50 10 5 5 5 1
100 10 5 5 5 1

• The shift-invert Lanczos algorithm is outperformed.
• The performance of the Davidson and the Jacobi-Davidson algorithms degrade when the

numbers of available blocks in Sk is small (typically smaller than 4).

5.3.2. Comparison for best CPU times In Figure 12, we report the best times obtained with
each algorithm for a specified number of requested eigenvalues. The Davidson algorithm is the

1.00E+02

1.00E+03

1.00E+04

1.00E+05

10 100

Number of eigenvalues requested

C
P

U
 T

im
e
 (

s)

Lanczos BDACG LOBPCG Davidson JDCG

Figure 12. Best CPU times observed for the elastic tube

most efficient algorithm and the shift-invert Lanczos scheme is significantly outperformed for
this model problem. The primary reason for this difference is because ARPACK only checks
convergence at restart instead of at each outer iteration. For this elastic problem, this check
results in more computations than necessary. This extra work is indicated by the norms of
residuals, which are two orders of magnitude smaller than requested.

In Table IV, we report the block sizes that gave the best performance for computing nev
eigenvalues. As for the Laplace eigenvalue problem, the gradient-based algorithms improve
with larger block sizes.



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 25

Table V. Relative cost for the orthogonalization for the elastic tube

nev BDACG LOBPCG Davidson BJDCG Lanczos
10 < 1 % 3 % 10 % 3 % < 1 %
20 4 % 5 % 14 % 4 % < 1 %
50 7 % 6 % 13 % 4 % < 1 %
100 9 % 9 % 15 % 4 % < 1 %

Table VI. Preconditioned operations for the elastic tube

nev BDACG LOBPCG Davidson BJDCG Lanczos
10 570 (85 %) 535 (83 %) 446 (65 %) 457 (49 %) 1565 (99 %)
20 1100 (83 %) 965 (82 %) 559 (61 %) 620 (48 %) 2921 (99 %)
50 2250 (81 %) 1970 (81 %) 1100 (66 %) 1195 (48 %) 6381 (99 %)
100 4580 (78 %) 4020 (79 %) 1920 (62 %) 2245 (46 %) 13986 (99 %)

Table VII. Statistics for LOBPCG with a tolerance of 10−7 on the elastic tube. The column headings
list the number of eigenvalues computed.

10 20 50 100
Ratio of CPU times 0.62 0.66 0.63 0.68
Applications of N 870 1745 3610 8370

In Table V, we report the fraction of time spent in the orthogonalization routine. For this test
case, the orthogonalization costs are small. However, as for the Laplace eigenvalue problem,
the orthogonalization cost increases with the number of eigenvalues requested.

In Table VI, we report, for each eigensolver, the number of applications of the AMG
preconditioner (first number) and the corresponding fraction of total time (second number).
As in Table III, BJDCG does not list the applications of the AMG preconditioner when
computing N−1MQ̂ in step (3) of Algorithm 4.5, which represents roughly 22% of the total
time. The block Davidson algorithm uses the least number of preconditioner applications.
Table VI emphasizes the point made previously that the Lanczos algorithm over-solves the
eigenvalue problem. Because ARPACK returned residuals that were at least two orders of
magnitude smaller than the requested tolerance, we benchmarked LOBPCG with a tolerance
of 10−7. Table VII lists the ratio of CPU times between LOBPCG (with the tolerance of 10−7)
and ARPACK (used in Figures 8–11) and the number of preconditioner application for this
benchmark. LOBPCG is still faster but the number of preconditioner applications increased
and so the gap with ARPACK has narrowed.



26 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

5.4. The aircraft carrier

Our third and final problem arises from a finite element discretization of an aircraft carrier.
The model is made up of elastic shells, beams, and concentrated masses. The mesh has
315, 444 vertices. A mode of the carrier is depicted in Figure 13. The pencil (K,M) is of

Figure 13. Mode for the aircraft carrier model

order n = 1, 892, 644. This was our most challenging problem.
The stiffness matrix K has 63, 306, 430 non-zero entries. Because no boundary conditions

are imposed, K has six rigid-body modes. Therefore, we performed our computations in the
M-orthogonal complement of the null space of K. The mass matrix M has 18, 163, 994 non-
zero entries. Using ARPACK to compute the extremal eigenvalues of M, we determined that
the mass matrix is numerically singular.

The AMG preconditioner generated three levels with 32056, 1336, and 26 vertices. The
storage requirement used by AMG on these levels represents 7% of the storage for K. As
an indication of the quality of the preconditioner, for the shift-invert Lanczos algorithm, the
preconditioned conjugate gradient algorithm reduces the residual norm by a factor of 2 · 105

in an average of 200 iterations.
The computations were performed on Cplant [11], which is a cluster of 256 compute nodes

composed of 160 Compaq XP1000 Alpha 500 Mhz processors and 96 Compaq DS10Ls Alpha
466 MHz processors. All nodes have access to 1 GB of memory.

On 48 processors, we determined the 10, 20, 50, and 100 smallest non-zero eigenpairs. A pair
(x, θ) is considered converged when the criterion

‖Kx−Mxθ‖2

‖x‖M
≤ θ · 10−5 (17)



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 27

is satisfied.
For the Jacobi-Davidson algorithm, the coefficient τ is set to the smallest Ritz value as soon

as the criterion
‖Kx−Mxθ‖2

‖x‖M
≤ θ ·

√
10−5 (18)

is satisfied. The average number of iterations to solve the correction equation ranged from 2
to 6.

All the algorithms returned Ritz vectors that were M-orthonormal to at least 10−12.

5.4.1. Comparison of CPU times As for the Laplace eigenvalue problem, we plot the speedup
relative to the time for ARPACK (9) for different block sizes and different number of computed
eigenvalues (see figures 14-17).

0.10

1.00

10.00

10 20 50 100

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 14. Ratio of BDACG to Lanczos CPU times for the aircraft carrier

We draw the following conclusions.

• The shift-invert Lanczos algorithm is not competitive with the other algorithms. The
explanation is the large number of preconditioned conjugate gradient iterations required
per outer iteration.

• The performance of the Davidson and the Jacobi-Davidson algorithms degrade when the
numbers of available blocks in Sk is small (typically four or less).

After step (3) of Algorithm 4.5 associated with BJDCG, the ill-conditioning of M and N
can destroy the orthogonality property Q̂T MWj = 0 necessary to ensure that copies of Ritz
values do not emerge. When a loss of orthogonality occurs, we reorthogonalize by projecting
Wj in the space M-orthogonal to Q̂. This extra step of orthogonalization is accomplished by



28 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

0.10

1.00

10.00

10 20 50 100

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 15. Ratio of LOBPCG to Lanczos CPU times for the aircraft carrier

0.10

1.00

10.00

10 20 50 100

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 16. Ratio of Davidson to Lanczos CPU times for the aircraft carrier



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 29

0.10

1.00

10.00

10 20 50 100

Number of eigenvalues requested

R
a
ti

o
 o

f 
C

P
U

 t
im

e
s

Block size 1 Block size 2 Block size 5 Block size 10 Block size 20

Figure 17. Ratio of BJDCG to Lanczos CPU times for the aircraft carrier

augmenting step (3) of Algorithm 4.5 with

Wj :=
(
I−N−1MQ̂

(
Q̂T MN−1MQ̂

)−1

Q̂T M
)

Wj .

This ensures not only that Q̂T MWj = 0 but also that the preconditioner of step (3) of
algorithm 4.5 is applied accurately.

5.4.2. Comparison for best CPU times In Figure 18, we report the fastest times obtained
with each algorithm for a specified number of requested eigenvalues. When computing 50 and
100 eigenpairs, all the algorithms have similar performance except for the Lanczos algorithm.
When 10 and 20 Ritz pairs are requested, LOBPCG has a slight edge over the next fastest
algorithm.

For shift-invert Lanczos, the linear solves with the PCG iteration represented more than
99% of the total CPU time. For the remainder of the eigensolvers, the application of the AMG
preconditioner represented between 80% and 90% of the total CPU time. We recall that the
AMG preconditioner is applied one vector at a time. Once again, the importance of applying
the preconditioner to a block of vectors is crucial.

In contrast to the Laplace and elastic tube eigenvalue problems, we do not present tables
listing the time spent in orthogonalization and application of the preconditioner. Since Cplant
implements a batch queue, the times varied substantially because of other jobs run currently
along with our benchmarks.



30 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

1.00E+03

1.00E+04

1.00E+05

1.00E+06

10 100

Number of eigenvalues requested

C
P

U
 T

im
e
 (

s)

Lanczos BDACG LOBPCG Davidson JDCG

Figure 18. Best CPU times observed for the aircraft carrier model

6. Conclusions

The goal of our report was to compare a number of algorithms for computing a large number
of eigenpairs of the generalized eigenvalue problem arising from a modal analysis of elastic
structures using preconditioned iterative methods. After a review of various iteration schemes,
a substantial amount of experiments were run on three problems. Based on the results of the
three problems, our overall conclusions are the following.

1. The single vector iterations were not competitive with block iterations. This statement
holds under the condition that matrix-vector multiplications, orthogonalizations and,
most significantly, the application of the preconditioner are applied in a block fashion and
the block size is selected appropriately. The exception occurs when the preconditioned
conjugate iteration needed by the Lanczos algorithm is efficiently computed (as in the
Laplace eigenvalue problem) because of the availability of a high-quality preconditioner.

2. Maintaining numerical orthogonality of the basis vectors is the dominant cost of the
modal analysis as the number of eigenpairs requested increases. The point at which this
occurs will of course depend upon the computing resources and the eigenvalue problem
to be solved. Therefore, an efficient and stable orthogonalization procedure is crucial.

3. Checking convergence of Ritz pairs at every outer iteration prevents over-solving the
problem. This was clearly an issue with our second problem and demonstrated the
inefficiency of ARPACK. Along these lines, our results demonstrated that the tolerances
used for the eigensolvers can be set at the level of discretization error.

4. For an increasing number of eigenpairs requested, the gradient-based algorithms are the
most conservative in memory use while BJDCG uses the most memory. We remark that
all the algorithms can be implemented to use less storage at the cost of more matrix-



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 31

vector applications and/or outer iterations. For example, the Davidson, BJDCG, and
Lanczos algorithms can be made to restart when the subspace size is less than 2 · nev at
the cost of more outer iterations; LOBPCG can be implemented to use only 4 · b instead
of 10 · b vectors of length n at the cost of more per outer iteration applications of K and
M.

5. Until the cost of maintaining numerical orthogonality becomes dominant, the efficiency
and cost of the preconditioner is a fundamental problem.

6. Except for BJDCG and the Lanczos algorithm, the eigensolvers required only a
single application of the preconditioner per outer iteration. Although a preconditioned
conjugate iteration to a specified accuracy can be carried out per outer iteration,
experiments on the Laplace eigenvalue problem revealed longer overall computation times
even though less outer iterations were needed.

As can be expected, our paper raises several questions for further study. One important
question is how well the shift-invert block Lanczos method of [20] would perform if the sparse
direct linear solver is replaced with an AMG-preconditioned conjugate gradient algorithm.

We caution the reader not to take the results of the numerical experiments out of context.
Our intent is less in deciding the best algorithm (and implementation) but instead determining
what are the best features and limitations among a class of algorithms on realistic problems
when using preconditioned iterative methods. We believe that an important criterion is the
simplicity of the algorithm and resulting implementation that leads to maintainable production
level software. Our implementations will be released in the public domain within the Anasazi
package of the Trilinos project.

Acknowledgments

We thank Roman Geus, ETH Zurich, and Yvan Notay, Free University of Brussels, for
providing us with Matlab codes of their Jacobi-Davidson implementation, Andrew Knyazev of
the University of Colorado at Denver, David Day and Kendall Pierson of Sandia National Labs,
and Eugene Ovtchinnikov of the University of Westminster for helpful discussions; Michael Gee
and Garth Reese, of Sandia National Labs, for the second and third problems of Section 5;
and Bill Cochran of UIUC.

REFERENCES

1. M. Adams, Evaluation of three unstructured multigrid methods on 3d finite element problems in solid
mechanics, Internat. J. Numer. Methods Engrg., 55 (2002), pp. 519–534.

2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide - Release
2.0, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994. (Software and guide are
available from Netlib at URL http://www.netlib.org/lapack/).

3. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2000.

4. L. Bergamaschi, G. Gambolati, and G. Pini, Asymptotic convergence of conjugate gradient methods
for the partial symmetric eigenproblem, Numer. Linear Algebra Appl., 4 (1997), pp. 69–84.

5. L. Bergamaschi, G. Pini, and F. Sartoretto, Approximate inverse preconditioning in the parallel
solution of sparse eigenproblems, Numer. Linear Algebra Appl., 7 (2000), pp. 99–116.



32 P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, R. S. TUMINARO

6. , Parallel preconditioning of a sparse eigensolver, Parallel Comput., 27 (2001), pp. 963–976.
7. L. Bergamaschi and M. Putti, Numerical comparison of iterative eigensolvers for large sparse symmetric

postive definite matrices, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 5233–5247.
8. Å. Björck, Numerics of Gram–Schmidt orthogonalization, Linear Algebra Appl., 197/198 (1994), pp. 297–

316.
9. W. W. Bradbury and R. Fletcher, New iterative methods for solution of the eigenproblem, Numer.

Math., 9 (1966), pp. 259–267.
10. J. Bramble, J. Pasciak, J. Wang, and J. Xu, Convergence estimates for multigrid algorithms without

regularity assumptions, Math. Comp., 57 (1991), pp. 23–45.
11. R. Brightwell, L. A. Fisk, D. S. Greenberg, T. B. Hudson, M. J. Levenhagen, A. B. Maccabe,

and R. E. Riesen, Massively parallel computing using commodity components, Parallel Computing, 26
(2000), pp. 243–266.

12. E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors
of large real-symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.

13. T. Ericsson and A. Ruhe, The spectral transformation method for the numerical solution of large sparse
generalized symmetric eigenvalue problems, Mathematics of Computation, 35 (1980), pp. 1251–1268.

14. Y. Feng, An integrated multigrid and Davidson approach for very large scale symmetric eigenvalue
problems, Comput. Methods Appl. Mech. Engrg., 160 (2001), pp. 3543–3563.

15. Y. T. Feng and D. R. J. Owen, Conjugate gradient methods for solving the smallest eigenpair of large
symmetric eigenvalue problems, Internat. J. Numer. Methods Engrg., 39 (1996), pp. 2209–2229.

16. D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi-Davidson style QR and QZ
algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998), pp. 94–125.

17. G. Gambolati, G. Pini, and F. Sartoretto, An improved iterative optimization technique for the
leftmost eigenpairs of large sparse matrices, J. Comput. Phys., 74 (1988), pp. 41–60.

18. G. Gambolati, F. Sartoretto, and P. Florian, An orthogonal accelerated deflation technique for large
symmetric eigenvalue problem, Comput. Methods Appl. Mech. Engrg., 94 (1992), pp. 13–23.

19. R. Geus, The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue problems, PhD
Thesis No. 14734, ETH Zurich, 2002.

20. R. Grimes, J. G. Lewis, and H. Simon, A shifted block Lanczos algorithm for solving sparse symmetric
generalized eigenproblems, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 228–272.

21. M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.
Willenbring, A. Williams, and K. S. Stanley, An overview of the trilinos project, ACM Transactions
on Mathematical Software. Software is available at http://software.sandia.gov/trilinos/index.html.

22. M. R. Hestenes and W. Karush, A method of gradients for the calculation of the characteristic roots
and vectors of a real symmetric matrix, Journal of Research of the National Bureau of Standards, 47
(1951), pp. 45–61.

23. W. Hoffmann, Iterative algorithms for Gram-Schmidt orthogonalization, Computing, 41 (1989), pp. 335–
348.

24. A. V. Knyazev, Preconditioned eigensolvers—an oxymoron, Electron. Trans. Numer. Anal., 7 (1998),
pp. 104–123.

25. , Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.

26. A. V. Knyazev and K. Neymeyr, Efficient solution of symmetric eigenvalue problems using multigrid
preconditioners in the locally optimal block conjugate gradient method, Electron. Trans. Numer. Anal., 7
(2003), pp. 38–55.

27. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale
Eigenvalue Problems by Implicitely Restarted Arnoldi Methods, SIAM, Philadelphia, PA, 1998. (The
software and this manual are available at URL http://www.caam.rice.edu/software/ARPACK/).

28. Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric
eigenproblem, Numer. Lin. Alg. Appl., 9 (2002), pp. 21–44.

29. A. Perdon and G. Gambolati, Extreme eigenvalues of large sparse matrices by Rayleigh quotient and
modified conjugate gradients, Comput. Methods Appl. Mech. Engrg., 56 (1986), pp. 125–156.

30. G. Poole, Y.-C. Liu, and J. Mandel, Advancing analysis capabilities in ANSYS through solver
technology, Electron. Trans. Numer. Anal., 15 (2002), pp. 106–121.

31. M. Sadkane and R. B. Sidje, Implementation of a variable block Davidson method with deflation for
solving large sparse eigenproblems, Numerical Algorithms, 20 (1999), pp. 217–240.

32. H. R. Schwarz, Eigenvalue problems and preconditioning, in Numerical Treatment of Eigenvalue
Problems, Vol. 5, J. Albrecht, L. Collatz, P. Hagedorn, and W. Velte, eds., Basel, 1991, Birkhäuser,
pp. 191–208. Internat. Series of Numerical Mathematics (ISNM) 96.

33. G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue



COMPARISON OF EIGENSOLVERS FOR 3D MODAL ANALYSIS 33

problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.
34. D. Sorensen, Numerical methods for large eigenvalue problems, Acta Numerica, Cambridge University

Press, 2002, pp. 519–584.
35. D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix

Anal. Appl., 13 (1992), pp. 357–385.
36. A. Stathopoulos and C. F. Fischer, A Davidson program for finding a few selected extreme eigenpairs of

a large, sparse, real, symmetric matrix, Computational Physics Communications, 79 (1994), pp. 268–290.
37. A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson, and the implicitly

restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245.
38. K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math., 128 (2001), pp. 281–309.
39. H. A. van der Vorst, Computational methods for large eigenvalue problems, in Handbook of Numerical

Analysis, P. Ciarlet and J. Lions, eds., vol. VIII, Amsterdam, 2002, North-Holland (Elsevier), pp. 3—179.
40. P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed

aggregation, Numer. Math., 88 (2001), pp. 559–579.
41. P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggregation for second

and fourth order problems, Computing, 56 (1996), pp. 179–196.
42. K. Wu, Y. Saad, and A. Stathopoulos, Inexact Newton preconditioning techniques for large symmetric

eigenvalue problems, Electron. Trans. Numer. Anal., 7 (1998), pp. 202–214.


